Line defects and induced doping effects in graphene, hexagonal boron nitride and hybrid BNC.

نویسندگان

  • Narjes Ansari
  • Fariba Nazari
  • Francesc Illas
چکیده

Effects on the atomic structure and electronic properties of two-dimensional graphene (G) and h-BN sheets related to the coexistence of dopants and defects are investigated by using density functional theory based methods. Two types of extended line defects are considered for pristine G and h-BN sheets. In these sheets, the presence of individual doping increases the charge transport character. The coexistence of dopants and defects tunes the band gap towards lower values and causes the direct-indirect band gap change. The relative stability and the electronic properties of various BxNyCz systems are analyzed in detail. We find that the structural properties of these types of systems strongly depend on the orientation of grain boundaries and whether these are parallel or perpendicular to the extended line defects. The electronic structure analysis of the different systems evidences the shift of absorption to the visible region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge Stability of BN sheets and Its Application for Designing Hybrid BNC Structures

First-principles investigations on the edge energies and edge stresses of single-layer hexagonal boron-nitride (BN) are presented. The armchair edges of BN nanoribbons (BNNRs) are more stable in energy than zigzag ones. Armchair BNNRs are under compressive edge stress while zigzag BNNRs are under tensile edge stress. The intrinsic spin-polarization and edge saturation play important roles in mo...

متن کامل

Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride

Monolayer hexagonal boron nitride (h-BN) possesses a wide bandgap of ~6 eV. Trimming down the bandgap is technically attractive, yet poses remarkable challenges in chemistry. One strategy is to topological reform the h-BN's hexagonal structure, which involves defects or grain boundaries (GBs) engineering in the basal plane. The other way is to invite foreign atoms, such as carbon, to forge biza...

متن کامل

Atomic layers of hybridized boron nitride and graphene domains.

Two-dimensional materials, such as graphene and monolayer hexagonal BN (h-BN), are attractive for demonstrating fundamental physics in materials and potential applications in next-generation electronics. Atomic sheets containing hybridized bonds involving elements B, N and C over wide compositional ranges could result in new materials with properties complementary to those of graphene and h-BN,...

متن کامل

Mechanical properties and failure behaviors of the interface of hybrid graphene/hexagonal boron nitride sheets

Hybrid graphene/h-BN sheet has been fabricated recently and verified to possess unusual physical properties. During the growth process, defects such as vacancies are unavoidably present at the interface between graphene and h-BN. In the present work, typical vacancy defects, which were located at the interface between graphene and h-BN, were studied by density functional theory. The interface s...

متن کامل

Gate-defined confinement in bilayer graphene-hexagonal boron nitride hybrid devices.

We report on the fabrication and measurement of nanoscale devices that permit electrostatic confinement in bilayer graphene on a substrate. The graphene bilayer is sandwiched between hexagonal boron nitride bottom and top gate dielectrics. Top gates are patterned such that constrictions and islands can be electrostatically induced. The high quality of the devices becomes apparent from the smoot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 39  شماره 

صفحات  -

تاریخ انتشار 2014